Java solution

BCS306A
Model Question Paper-1/11 with effect from 2023-24 (CBCS Scheme)
USN
Third Semester B.E. Degree Examination
Object Oriented Programming with JAVA
TIME: 03 Hours Max. Marks: 100

Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.
02. Use a JAVA code snippet to illustrate a specific code design or a purpose.

*Bloom’s
Module -1 Taxonomy Marks
Level
Q.01 | a | Explain different lexical issues in JAVA. L2 7
b | Define Array. Write a Java program to implement the addition of two matrixes. L3 7
Explain the following operations with examples. ()<< (ii)>> (iii)>>> L2 6
OR
Q.02 | a | Explain object-oriented principles. L2 7
Write a Java program to sort the elements using a for loop. L3 7
Explain different types of if statements in JAVA L2 6
Module-2
Q. 03 | a | What are constructors? Explain two types of constructors with an example program. L3 7
Define recursion. Write a recursive program to find nth Fibonacci number. L3 7
Explain the various access specifiers in Java. L2 6
OR
Q.04 | a | Explain call by value and call by reference with an example program L3 7
Write a program to perform Stack operations using proper class and Methods. L3 7
Explain the use of this in JAVA with an example. L2 6
Module-3
Q.05 |a Write a Java program to implement multilevel inheritance with 3 levels of L3 7
hierarchy.
Explain how an interface is used to achieve multiple Inheritances in Java. L3 7
Explain the method overriding with a suitable example. L2 6
OR
Q.06 |a What_ is single-level inheritance? Write a Java program to implement single-level L3 7
inheritance.
b W_hat is the importance of the super keyword in inheritance? Illustrate with a L3 7
suitable example.
¢ | What is abstract class and abstract method? Explain with an example. L2 6
Module-4
Q.07 |a Dgfine package. Explain the steps involved in creating a user-defined package Lo 7
with an example.
b | Write a program that contains one method that will throw an
Illegal AccessException and use proper exception handles so that the exception L3 7
should be printed.
c | Define an exception. What are the key terms used in exception handling? Explain. L2 6
OR
Q.08 |a | Explain the concept of importing packages in Java and provide an example
demonstrating the usage of the import statement. L2 !

Java solution

b | How do you create your own exception class? Explain with a program. L3 7
c | Demonstrate the working of a nested try block with an example. L2 6
Page 01 of 02
BCS306A
Module-5
Q.09 | a | What do you mean by a thread? Explain the different ways of creating threads. L2 7
b What is the need_ of synchronization? Explain with an example how synchronization L3 7
is implemented in JAVA.
¢ | Discuss values() and value Of() methods in Enumerations with suitable examples. L2 6
OR
Q.10 | a | What is multithreading? Write a program to create multiple threads in JAVA. L2 7
b | Explain with an example how inter-thread communication is implemented in
JAVA. L3 !
¢ | Explain auto-boxing/unboxing in expressions. L2 6

Java solution

Page 02 of 02

1. Explain different lexical issues in JAVA.
Solution:

DIOCK.

> Lexical Issues
Java programs arc a collection of whitespace, identifiers, literals, comments, operators,
separators, and keywords.
® Whitespace: In Java, whitespace is a space, tab, or newline.
e ldentifiers: ldentifiers are used for class names, method names, and variable names. An
identifier may be any descriptive sequence of uppercase and lowercase letters, numbers,
or the underscore and dollar-sign characters. Java is case-sensitive, so VALUE is a

different identifier than Value. In Java, there are several points to remember about

identifiers. They are as follows -
1. All identifiers should begin with a letter (A to Z or a to z), currency character

($) or an underscore (_).
After the first character, identifiers can have any combination of characters.

A key word cannot be used as an identifier. ldentifiers are case sensitive.

w o

Examples of legal identifiers: age, $salary, _value, 1_value.

Examples of illegal identifiers: 123abc, -salary]

(= VIS

Some valid identifiers are:

AvgTemp count a4 Stest this_is_ok

7. Invalid identifiers arc:

count high-temp Notok

e Literals: A constant value in Java is created by using a literal representation of it. For

example, here are some literals: 100 98.6 'X' "This is a test". Lelt to right, the

first literal specifies an integer, the next is a floating-point value, the third is a character

constant, and the last is a string.
e Comments: There are three types of comments defined by Java. You have already seen

two: single-line and multiline. The third type is called a documentation comment. This

Java solution

type of comment i
L1s used to produce an HTML file that documents your program. The

® Scnmmlo;s- I
. * In Java re
» there are a few characters that are used as separators. The most

n i A\

statements
- The separators are shown in the following table:

S)’llb(i ‘Name ‘Purpose
() Parc;slh;z s in lists of metho
ses }\J'i?u? eznlag; ;us:s of parameters in method déﬂmu‘on and nmocagoh _
Is O defining precederce in ex ; ' :
. ; pression: i
‘). . — ‘i‘n control statements, and sufrounding cast t)bess. i
races u in -
sed to contain the values of automatically initialized arrays N;o;@—

(] — ‘e_racaeg; .:Jo deﬁne.a block of code, for classes, methods, and local scopes
R g Sedo "“'?‘,‘-’?,"a,y ypes. Also used when dereferencing array =
L _[demicolon Terminates statements, - W - § array valves.

. Comma Seps - Al
Parates consecutive identifiers ; . oo

p €S 1n 3 variable declarati =

e Chain statements together inside a for stat : ation. Also used to

D g .

¢ JﬂVﬁ '(ﬂv\un-:la

b Define Array. Write a Java program to implement the addition of two matrixes.

Solution:

» Arrays
e An array is a group of like-typed variables that are referred to by a common name.

Arrays of any type can be created and may have one or more dimensions.

i its-index ient
e A specific clement in an array is accessed by its-index. Arrays offer a conven

ine related information.
means of grouping r S

import java.util.Scanner;

public class MatrixAddition {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

System.out.print("Enter number of rows for matrices: ");
int rows = scanner.nextint();

System.out.print("Enter number of columns for matrices: ");
int columns = scanner.nextint();

int[][] matrix1 = new int[rows][columns];

int[][] matrix2 = new int[rows][columns];

int[][] sum = new int[rows][columns];
System.out.printin("Enter elements for matrix 1:");

Java solution
inputMatrix(matrix1, scanner);
System.out.printin("Enter elements for matrix 2:");
inputMatrix(matrix2, scanner);
for (inti=0;i<rows; i++) {
for (intj = 0; j < columns; j++) {
sum[i][j] = matrix1[i][j] + matrix2[i][j];
}
System.out.printin("Resultant matrix after addition:");
displayMatrix(sum);
scanner.close();
}
public static void inputMatrix(int[][] matrix, Scanner scanner) {
for (inti = 0; i < matrix.length; i++) {
for (intj = 0; j < matrix[0].length; j++) {
System.out.print("Enter element at position [" +i+ "]["+j +"]:");
matrix[i][j] = scanner.nextInt();
}
}

}
public static void displayMatrix(int[][] matrix) {

for (int[] row : matrix) {

for (int elem : row) {
System.out.print(elem + " ");

}
System.out.printin();

}

}
}

‘ c. Explain the following operations with examples. (i)<< (ii)>> (iii)>>>

(i) "<<” (Left Shift Operator):

The left shift operator ('<<’) shifts the bits of a number to the left by a specified number of positions. This
operation effectively multiplies the number by 2 raised to the power of the shift amount. Bits shifted off the left end
are discarded, and zero bits are shifted in from the right end.

Example:

Java solution

int num =5;
int result = num << 2;
System.out.printin(result);

(ii) *>>" (Signed Right Shift Operator):

The signed right shift operator (">>") shifts the bits of a number to the right by a specified number of positions.
This operation effectively divides the number by 2 raised to the power of the shift amount. Bits shifted off the
right end are discarded, and the leftmost bit (the sign bit) is shifted in from the left end, preserving the sign of
the number.

Example:

int num =-16;

int result = num >> 2;
System.out.printin(result);

(iii) >>>" (Unsigned Right Shift Operator):

The unsigned right shift operator (">>>") shifts the bits of a number to the right by a specified number of
positions. Unlike the signed right shift operator, the unsigned right shift operator fills the leftmost positions
with zero bits regardless of the sign of the number.

Example:

int num =-16; // Binary representation: 1111 0000
int result = num >>> 2;

System.out.printin(result);

It's important to note that the behavior of these operators may vary based on the data type of the operand.

Q.02

a | Explain object-oriented principles. L2 7

Java solution

Solution:

> The Threec OOP Principles

All object-oriented programming languages provide mechanisms that help you
implement the object-oriented model. They are cncapsulation, inheritance, and

polymorphism.

1. Encapsulation

2.

* Encapsulation is the mechanism that binds together code and the data it manipulates, and

Keeps both safe from outside interference and misuse. One way to think about
encapsulation is as a protective wrapper that prevents the code and data from being
arbitrarily accessed by other code defined outside the wrapper. Access to the code and data
inside the wrapper is tightly controlled through a well-defined interface.

Since the purpose of a class is to encapsulate complexity, there are mechanisms for hiding
the complexity of the implementation inside the class. Each method or variable in a class
may be marked private or public.

The public interface of a class represents everything that external users of the class need to
Know, or may know.

The private methods and data can only be accessed by code that is a member of the class.

Therefore, any other code that is not a member of the class cannot access a private method

or variable.
Fousr
th" [AQus
P C methocs rwharny A st
can be used © U e L)
protect praace
axa o A =
raie L 2 /
PSRN A A [~ A
N C C 1
(R % A C ¢ |
e A [} A CC a
s -
A AS
< »
::n-uu:‘ oI
o)
Inheritance

* [Inheritance is the process by.which one object acquires the properties of another object.

This is important because it supports the concept of hicrarchical classification.

Java solution o i
* For example, a Golden Retriever is part of the classification dog. which in turn is part of

the mammal class, which is under the larger class animal.)

* Without the use of hierarchies, each object would need to define all of its characteristics
explicitly. By use of inheritance, an object need only define those qualities that make it
unique within its class.

* It can inherit its general attributes from its parent, Thus, it is the inheritance mechanism

that makes it possible for one object to be a specific instance of a more general case.

3. Polymorphism
* Polymorphism (from Greek, meaning “many forms™) is a feature that allows ope interface
to be used for a general class of actions. More generallv, the concept of polymorphism js
- often expressed by the phrase “one interface, multiple methods.”
* This means that it is possible 1o design a generic interface 10 a group of related activities,
This helps reduce complexity by allowing the same interface to be used o specify a
&eneral class of action,

Java solution

| b | Write a Java program to sort the elements using a for loop.

L3

Solution:

* In this example, x i

test x < 10 is performed. If the outcome of this test is true, the printin() statement is

executed, and then the iteration portion of the loop is executed. This process continues

/c
Demongtrate the foy loop.

Call thig file "ForTeat.java*.
o/
class ForTest (|
public static void main(String args(]) (
int »x;

for(x = 0; %<10; % ¥%+1)
System.cut.printin{"Thiz ign %x: * +» x);

This program generates the following output:

This is x:
This is x-:
This is x
This is x:
This is x
This is x:
This is x:
This is x%:
This is x:
This is x:

QOO W& W~ o

until the conditional test is false.

s-thedeep conkeLvariableAH&iniﬁa#MMMnMauzaﬁen*

portion of the for. At the start of each iteration (including the first one), the conditional

Java solution

| 2

| ¢ | Explain different types of if statements in JAVA

L2

Sdection Syedenents

'Ukz ,E T Li) SWexJzudw
12 Bok of tocle ny i F
’ekfv\&mncmﬂ A 3
nHivnes
Hbou, w swpped 4 exeed™ =
(“H«:lwwo%i’w}omaj\m

Syofwt‘d
42 valae | 3%@],0] ?

3* Ane Sreten~cnb n e J%-
Stedetnngond <EO.J,<) e SWU An Py
eloe b\,o(_l«s ene WW}C_Q/I

S yndex (ondit)
'\'!P
S‘rmh
!
chac
5 &
3
B (o
SO f’ a
3 ()
eloe

{ s-o-f(b);]

Java solution

Q.03 | a | What are constructors? Explain two types of constructors with an example program.

L3

Q)M'\/\UC}OM
A consirudpr = @ Sped ool
m/lﬁcjoMmfﬁa‘*‘% o rawtly € O‘oleiwtfd
olled [uot o.t’rvw. Fing ALETY 0
g3 G J iyt : &ojv/\ n e
?Mo%edvgiljwimm el ¥
s tebo . constaudr Tor Hnt |

O_BMU‘U\—OJMB

c{;&u %MU:MM a defoult _covuﬁw@" *Ljva&
:::ba,‘oas N, Objﬁd b ero o it oll‘ba ey
S T, B Siiliied

o Ty A3
@MMQ}U &M o fanal

. , Hhad
declonation exapd Fhe homs g
T lamnam and have_no fehi Hype.

Szf\:"CDC = ;lm cloarinane
e e

y) _,
———— —

Java solution

%, clons &pudend
Q Shucund (ind a,&w& ., clou J)

\)sw;a/-
Nnonrnat = n)'
3CBAL:A)

1 J

Types oi Corntru(Jorns
peas o-b Conatwu o -

Thee e Fwo ﬁ‘/
| DL‘bCLALu Conatrmuthors — Jhe Conatrudos

o ith — o.b @\Gfummﬁ 13
ohtcwu Conatru (foa
%- clasms <l
% N0

2. wa;u,b Consrudors _ Jhe Convhadh.

Wit oL OXh musnt nudre o‘t O‘/‘a""""‘“‘h

(‘26,\ {jou;g Cl
i (ind @) 3hay n)

3
5

2. Clam &)
0 g (deuble 8)

]
)

= 2

Java solution

\ b \ Define recursion. Write a recursive program to find nth Fibonacci number. L3

» Recursion

.) . 4 . 4
lava supports recursion. Recursion is the process of defining something in terms of itself. As
it relates to Java programming, recursion is the attribute that allows a method to call itsell, A

method that calls itself is said to be rechrsive,

* The classic ex ; ion i i
assic example of recursion is the computation of the factorial of & number. The

factorial of a number N is the product of all the whole numbers between | and V. For
exam ial i i actori |

ple, factorial is | x 2 x 3, or 6. Here is how g lactorial can be computed by use of a
recursive method;

M A simnle nvamalo of e ent .

public class Fibonacci {
public static void main(String[] args) {
int n = 10; // Example: Find the 10th Fibonacci number

int fibonacciNumber = fibonacci(n);
System.out.printin("The " + n + "th Fibonacci number is: " + fibonacciNumber);

}

public static int fibonacci(int n) {
if (n<=1){
return n; // Base case: Fibonacci of 0 is 0, Fibonacci of 1 is 1

} else {
// Recursive case: Fibonacci of n is the sum of Fibonacci(n-1) and Fibonacci(n-2)

return fibonacci(n - 1) + fibonacci(n - 2);

Java solution

| | ¢ | Explain the various access specifiers in Java. |

Solution:

V’ Sine i d: TR G A
/}ﬁw‘j mﬁuq
:qu Q'Q'LOWZ‘ J{b (. “‘-
ord~o) Qe Fo Ao

W‘Lo f ‘()‘:ur‘b We Alcen- Sr)edﬁ"’/u- -
Java F:\'OV“CL'? {)-o
‘SP(_U"B"U\A :

() PLEC = PUblic dames muttuods 4 fields
ceN be Q@mu’/ ‘6'\0% R ev\u\/co’ku&.

9 kadu!_ Poeteded mthods ¢ frelds can

= OL"I%CMAI J\/pw o~£ el

& bt Altemied witun #ae Lanme (Jan Fo
w&ld& Hae matodo £ t‘lﬂw bb‘x)’u(‘},%o
:};tn s SubUdarwe bud et 6’“”’7 @,7014%
@ privade. Psvede nauttrodo ? ﬁ‘dd‘{ Gaen
ond be cccaz/neal it e dame. Clar
ﬁ,]@'wdv e nadhods € filds blorg.
g o mastly woes] o encapsuleion.

B defout — 3f e oo rad sdd cccere
srwqg/c love] ,Hran sudh a ctand 'W;;LM
Ldd ol ke acendble fre i o
e padkage #o aak B BT

e oudwdey
oﬁ%‘dcﬂ bdb*\%,b‘dmjfm & \'
thoy pacEage.

Java solution

1 Q.04 [a | Explain call by value and call by reference with an example program 13 | 7

Solution: when you pass arguments to a method, there are two ways in which these arguments can be passed: "call
by value" and "call by reference". These concepts refer to how the parameters are passed to the method and how
changes made to the parameters affect the original variables.

Call by Value:In call by value, a copy of the actual parameter's value is passed to the method. Any changes made to
the parameter inside the method do not affect the original variable.
public class CallByValueExample {
public static void main(String[] args) {
int num = 10;
System.out.printin("Before calling the method: " + num);
changeValue(num);
System.out.printin("After calling the method: " + num);
}
public static void changeValue(int value) {
value = 20;
System.out.printin("Inside the method: " + value);
}
}

In the example above, even though the value of value is changed inside the changeValue method, it does not affect
the original variable num because Java passes arguments by value.
Call by Reference:
In call by reference, instead of passing the actual value, a reference to the memory location of the actual parameter
is passed to the method. This means any changes made to the parameter inside the method will affect the original
variable.
public class CallByReferenceExample {
public static void main(String[] args) {
StringBuilder str = new StringBuilder("Hello");
System.out.printin("Before calling the method: " + str);
changeValue(str);
System.out.printin("After calling the method: " + str);
}
public static void changeValue(StringBuilder value) {
value.append(" World");
System.out.printIn("Inside the method: " + value);
}
}

In this example, the changeValue method modifies the StringBuilder object passed to it, and this modification
affects the original variable str because Java passes arguments by reference for objects.

Java solution

\ b \ Write a program to perform Stack operations using proper class and Methods. \ L3

Solution:
public class Stack {
private int maxSize;
private int[] stackArray;
private int top;
public Stack(int size) {
maxSize = size;
stackArray = new int[maxSize];
top = -1; // Stack is initially empty
}
public void push(int value) {
if (top == maxSize - 1) {
System.out.printin("Stack overflow! Cannot push element " + value);
}else {
stackArray[++top] = value;
System.out.printin("Pushed element: " + value);
}
}
publicint pop() {
if (top ==-1) {
System.out.printIn("Stack underflow! Cannot pop element");
return -1;
} else {
int value = stackArray[top--];
System.out.printin("Popped element: " + value);
return value;
}

}
public void display() {

if (top ==-1) {
System.out.printin("Stack is empty");

} else {
System.out.print("Stack elements: ");
for (inti=0;i<=top; i++) {

System.out.print(stackArray[i] + " ");

}
System.out.printin();

}

}
public static void main(String[] args) {

Stack stack = new Stack(5); // Create a stack of size 5
stack.push(10);

stack.push(20);

stack.push(30);

stack.display();

stack.pop();

stack.display();

Java solution

| ¢ |

Explain the use of this in JAVA with an example.

L2

\l

Ii’LTS“ Kczwoa.o}

Jave oLk«bM,o e it V-Ly\/vofwj *o

be Uoed witin on metiod Ho)u.bu?foﬁ‘-t-

Cuwrnerd objed - . Any membes oé Hhe ot

olo\')td ‘{)Mm wiHin an natane madtied on o
COM"/\MUW"M e hﬁtb\)\i_tﬂ 57/ u,a.\ya “‘H/\TSH

Solution:

Jherng o vv\n.u«x/ Uneh Of)wmlh k‘?”""”“ﬂ

. /Ié—_ca,—i!i_a CO"M\')MU“U« it anorreal
Comiructon 1 Ay u7wou Cew) be wadd
4o call A Conatru(fo cottin anotire~

Cornt~ad JOA O‘b Ahhe Sanre cloury . Sﬁ U'Of’lj,
H st be tihe '{)""UH 8"0-*01/\(1/\1' inthe Conpruatfon

[l

¢ clon Shdod |
}

Shidend (ind Q,SMU §) double)

;

Ahiz() s] calls defoudd Comppructor

(;U\ESCS ol)- [calls 2 Mﬁcpmwgﬁu
K .

Siwdend (Stniny 5 dowibsle d)
¢ Ak

-

J
Shedert O
ks

z
!

Java solution

Q.05 | a | Write a Java program to implement multilevel inheritance with 3 levels of

hierarchy. L3

L. Mulhleve) Thoutence
(' Tava does allouws a cdam to exded Qnothy,

Clors hich Wm exdencls cinotha ey

o5 Mudh b
& 8o on. JWiz 'b/)o e celld a2 %

Jre oncler of) executon Oﬁ Conplnut o Aeq
When an ob\}cd 073 +the clers at T ﬂeoé Jeve/.

Claa A
5 AC)

m ; S'O-F[MA‘S C,DM“MJU’UA")/“
[- 33
B : Clewn 8 ex;knJA A
i 6G()
i ' ZS S-o-[’(”g‘s CDMMLJ‘DA")/-
olp - | g ;

A's Constnuttor Uy C ew 8
B'S Conataudtoa f 6.0

C's Comhution § S'cvf’(”('S c,om)/wdw"))
D'S Comtautson i Z
o ; ‘ :
Cloon D extends C
§ DO
.f . SOP ("D"S Q:)NHAUU“D)\"))
g
3

Fudouc ¢lon 4’%

{ ‘Fu,lobc Sﬁvd-\c ’\T01c§ WALUN 5‘1/*‘”‘@
_ Sl

Solution: — J L

Java solution

// Parent class
class Animal {
void eat() {
System.out.printin("Animal is eating");
}
}
// Child class inheriting from Animal
class Dog extends Animal {
void bark() {
System.out.printin("Dog is barking");
}

}
// Grandchild class inheriting from Dog

class Labrador extends Dog {
void color() {
System.out.printIn("Labrador is brown in color");
}
}

public class Main {
public static void main(String[] args) {
Labrador labrador = new Labrador();
labrador.eat(); //Inherited from Animal
labrador.bark(); // Inherited from Dog
labrador.color(); // Own method of Labrador
}
}

| b | Explain how an interface is used to achieve multiple Inheritances in Java.

Solution:multiple inheritance refers to a scenario where a class inherits behaviors (methods) and properties (fields)
from more than one superclass. Unlike some other programming languages like C++, Java does not support multiple
inheritance with classes. However, Java provides a mechanism to achieve a form of multiple inheritance using
interfaces.

An interface in Java is a reference type, similar to a class,that can contain only constants, method signatures, default
methods, static methods, and nested types. Interfaces cannot have instance fields or constructors. Classes can
implement one or more interfaces, thus allowing them to inherit behavior from multiple sources.
Here's how an interface is used to achieve multiple inheritances in Java:
1. Define interfaces: Interfaces are declared using the “interface’ keyword. They contain method signatures without
any implementation details.
interface Interfacel {

void method1();
}
interface Interface2 {

void method?2();
}
2. Implement interfaces: Classes implement interfaces using the ‘implements” keyword. A class can implement
multiple interfaces.
class MyClass implements Interfacel, Interface2 {

// Implement method1() from Interfacel

public void method1() {

// Implementation

}

Java solution

// Implement method2() from Interface2

public void method2() {

// Implementation

}
}
3. Override interface methods: The implementing class must provide concrete implementations for all the methods
declared in the interfaces it implements.
4. Use the class: You can create an object of the implementing class and call its methods.

public class Main {
public static void main(String[] args) {
MyClass obj = new MyClass();
obj.method1();
obj.method2();
}
}
By implementing multiple interfaces, a class can inherit and provide implementations for methods defined in those
interfaces. This approach promotes code reusability and flexibility in design.

| ¢ | Explain the method overriding with a suitable example. \ L2 | 6

Solution: M.L?H/’-Dd' OMMOQ"‘“?
Owuo&iﬁ D notha b o &Mfa\/ /mc&ﬁw?
dhe metiod osain in the Subddend io o

- n
e rewO Oli\h‘m'bm acles Fhe Fvv;\nou/) t" @)
t@» mu‘h.oeo N Fouuwd clanm . .
thr\,i'h‘of)_ AN i natence rr_aj”/\?o’ AN q&uﬂydaﬂj
oty e Sanse %qa/ma:hw ("LQJ’YLQ ,}}Z::M‘}t\—};fﬁ
Lo 'iypf of its FW)W ¥ |
Qy an Arsntonce mama/ cn it 3“#)01 Lo
ovesicles #ne &uperclar's |
s alod suhon a .'
AD ovesos di Mmm j?,ju waotén .|
814.1917,0{ oi St AV
h’Lij\f\/OC/O Fics A3 co e
%- Clewn AﬂjMaJ)
g

i
i
a Covevvand refuan ﬁ’i‘ﬂ ,

VOio' eat () :
(¢.0.p("Eab tnicea dyl) |

\zzoaJ Sleep () [l Ovessudoden nretisd |

iS-O' "Cleepin VABL\AA")) . '
L pirt b f

b §

Java solution

Q.06 |a

What is single-level inheritance? Write a Java program to implement single-level
inheritance.

L3

Solution:

Single Inheritance Example:When a class inherits another class, it is known as a single
inheritance. In the example given below, Dog class inherits the Animal class, so there is the single
inheritance.

class Animal{
void eat(){
System.out.printin("eating...");

}

class Dog extends Animal{
void bark(){
System.out.printIn("barking...");

}

class TestInheritance{
public static void main(String args[J){
Dog d=new Dog();

d.bark();
d.eat();
}
}
Output:
barking...

eating...

Java solution

b | What is the importance of the super keyword in inheritance? Illustrate with a suitable example.

i

S\.ﬁbu ¢ K&ywoh_ey
(Buper V_Qywo)x.cﬂ s Wed $or
@ Jo make a cfld to S\Afe)lm ConyIui e,

@ Jo &ﬁuﬂ-o Superdaso membe, When
e ™ o name Codlizs on behreen
SLLFu(Jam Mmoember 4 a ch)sJ\AeA/Suﬂodam
mombes .

D Supen can b used o make a cald 0
gu.pu\da/m Consinn Upn %«om e . Subdaa
CornIructor . ;

i
%f i S\L’Du(a)_a-iﬂ'}'))

é\k,‘o{)i() weead aLquyA be Hlre \‘L’l)w‘} St

exocuded rmide a Subdosr' Gonstauutoh

ga_ Clam Rox
% Box (double w , double h, dowsle d)

g
3 5
clama Box\'\)uﬁrl/d e’)d'f/\c&) Lox
S olwbu wuéw/‘ -
&ox\f\wd{/\)’ (doublzw)cﬂouble b, Jéu.bltc:’
. o‘—owbte ™)
§ S\Af'uL [cu h 0/)) // Superclos

(oryduJor Box

Kw{’a’w ’Tn)' 3 called

J

Solution:

Java solution

What is abstract class and abstract method? Explain with an example. L2

i - 3)) can't G !
Solution: T R T e o3 abhs

%,_ cmirad dan Animed ' Clans DU WAN(M)

Absiract cClases in Tave N
Jhere cne heodions (D which e woans

o o’u‘lb""\e Qa é\kfumclm Hood oedewes -ﬁ"-’y

LLRNVIG VPl o‘b o) 5\'\/\9/‘) alss)—~a chon wi‘Hmoy,ﬂ

F)Lovioliax a COV\)\.{)LQ,‘!‘f iMPLc/N/\:fc_ﬁd'Y)

Catny metod -

TJhe Shabonn W\a)/bc i ot

we reed Ao e"‘lb'o"ce o s
Sorme nhonas IN At .&u.{(o

- : dhe .
;nw;&j;h;j{oe Tv::z;:!f) ",hbycnlchLa:%‘iCN) Ut
’Q_E‘S'fmd' k-z/wwmp '
ostencd oetnod - 32 T @ methed Iy
clidased withoud an ,im'ptemﬂ_m:faﬁoo.

L_O,bs‘rlzad iarel ’F'(?Y\i q); r

Abstrad clam - St i3 aclaa el I

oudcuu.d) adbosiact — 4 VDY o). F%y not indude
abst~atd rr\—d'twclo These C landen canrwnd be
l:r\/b+cud'ia:§-€—al./ bud 3”'\-&/ can be Subc,l_m/)/J(_JL
8~b a cdcres IncJ,(,.Lola/) ados trad ma_:H,\,oa[ﬂ/ ‘H«L
Claes iReN muot bt dedaned - adostract
T

abshad hattype mativednace [args) ;

/

R

—

128 pd. s

- é;Q?u‘nr'taj‘('—‘ nee)

3 a,b"_s,')'«ﬂld void HO, { woid O /
AN'M&}()/Z

Java solution

7a | Define package. Explain the steps involved in creating a user-defined package with an
example.

L2

?Q dLCL’ D '~—Y— }51\’(01'«5{! cen

BN — i

(o

D Ahe f_cicm(}(.

Corntaol meJroism.

HAad f&dcna,e~fw,n cleys b ers Cov)
be defined Fhad oo med only exposed

Defining o Padcage

x Pqu_cié_g cormmand oo Thhe <t(M"‘ Itmdt-

N a Jova dounce <o Any

acdca ; ;
FUN S::i,u,aa,e St dl‘t‘\r\.w oL e arqu

alxtou.xl:’ pecckeaie ; whidn han o nome.

I"QUU"‘QXPIL@)

B fenengan b bagery

Solution:

Jo cruade a paddkane | Sinaply incluole

Pid_(_ia/_t_/) - Java r”‘OV‘CLU’ a muedhoousm
\&Uh. f’wu“ih'orkivy dhe clarm name Spac "o
™Mo mar\aaij,u Chaunden . Tz mudhavusm

Jhe padeage T3 both a r\ouvu'@ £ a'\/fﬁ(ﬂ'b}

Classen Con be OQA‘b"MEj Crascle «)OQUU‘ﬁ{
Hrod cre rod accemble 7 code outsde

Vo Colbion menkee af dh Sowi pUeRgE

|

Aamies decdane)
coitin #had ile will betory fo Hoe Specigied

./‘y)

Esacly clammes aue Stosdd 1By ;quéjxw |
13 o,yu'-H-eJ 2 Clans Nnannes QMlbUd indo ta_

r\jmme ofb Hre 'F“U‘Cﬂé‘a

Java solution

b | Write a program that contains one method that will throw an Illegal AccessException and
use proper exception handles so that the exception should be printed. L3 7
Solution:

public class Main {
public static void main(String[] args) {
try {
// Call a method that throws lllegalAccessException
performOperation();
} catch (lllegalAccessException e) {
// Handle the exception

System.out.printin("Caught IllegalAccessException: " + e.getMessage());

}

// Method that throws Illegal AccessException
public static void performOperation() throws lllegalAccessException {
// Simulating a scenario where lllegalAccessException occurs

throw new lllegalAccessException("Access denied");

c | Define an exception. What are the key terms used in exception handling? Explain. L2 6

Solution:

In programming, an exception is an event or object that occurs during the execution of a program, which disrupts
the normal flow of instructions. Exceptions are typically caused by errors in the program's logic, unexpected
conditions, or external factors such as input/output failures. In Java and many other programming languages,
exceptions are represented as objects that contain information about the error, such as its type, message, and
possibly other relevant details.

Key terms used in exception handling include:

1. Exception: An object representing an exceptional condition that has occurred during the execution of a program.
Exceptions can be thrown (generated) by the program or by the runtime environment.

2. Throw: The act of explicitly raising (throwing) an exception within a program. This is typically done using the
‘throw" keyword followed by an exception object.

3. Try: A block of code where exceptions may occur. It is followed by one or more catch blocks and/or a finally block.

4. Catch: A block of code that handles (catches) an exception thrown within a try block. It specifies the type of
exception it can handle and provides code to handle the exception gracefully.

5. Finally: A block of code that is always executed, regardless of whether an exception occurs or not. It is typically
used for cleanup tasks such as closing resources (e.g., files, network connections) or releasing locks.

Java solution

6. Try-with-resources: A Java feature introduced in Java 7 that allows automatic resource management. It ensures
that resources (e.g., files, streams) are closed properly, even if an exception occurs, by declaring and initializing the
resources within a try block. The resources are automatically closed when the try block exits, either normally or due
to an exception.

7. Checked Exception: An exception that must be declared in a method's signature using the “throws™ keyword or
handled using a try-catch block. Examples include I0Exception and SQLException.

8. Unchecked Exception: An exception that does not need to be declared or handled explicitly. These are subclasses
of RuntimeException or Error. Examples include NullPointerException and ArraylndexOutOfBoundsException.

9. Exception Handling: The process of detecting, reacting to, and resolving exceptions in a program. It involves
writing code to handle exceptions gracefully, prevent program crashes, and provide meaningful error messages to
users.

10. Exception Propagation: The mechanism by which an exception is passed from one method to another or from
one part of the program to another. If an exception is not caught and handled within a method, it is propagated up
the call stack until it is caught or until it reaches the top-level of the program, resulting in termination of the progr

Java solution

Q.08 | a | Explain the concept of importing packages in Java and provide an example L2
demonstrating the usage of the import statement.

Solution:

![%1&7 ﬁ)o Uc a&m

. Fava includes Sl ;M,’OO/U; S -h,JaNra,
codain Uemes | an entine padeagls info
Vitibi Lily
Once imfo»d-eJ s clews can be }‘LZSMJ
to clinectly iy only it name .
Jhe mpond 5+7v37 B o Conveniente- fo Fhe
programptes € A3 ricd ﬁd\r\ical}/ reecled Fo
write a Compleft Jcure F"OJ’\M 9+ scaves
Lot o} }7,01»«(7.
Fra Source il imp ;
.Bouow-'wzj Al reuca.a,z Stt € icetoaz edyy
Clev cltﬁniﬁowa.
Symme :

irmpord ptcal{.ngd& (. (Qomname |)

ord Stnd oClith immicﬁjafy

Y A
top [evd)poaux$ Subawq;,\gdf foULadc

R T quqfao-*/'
®% [trt’jd J‘Q\)q . whd - Daj'e/' |
EV\AJ’Du«d \J'Onra.lawﬁ‘ 7"/' |
@ Facuaz/ MyPauc/' ' f""‘f”"”' Myf’au(.}j
dav Balen e " eclan € |

i

.3 : Bilanct b=rew gﬂlafill{)/
-~ 7 i

Java solution

| b | How do you create your own exception class? Explain with a program. \ L3 | 7

Solution: In Java, you can create your own custom exception classes by extending the built-in Exception class or one
of its subclasses like RuntimeException. This allows you to define specific types of exceptions that are relevant to
your application's domain. to create a custom exception class:

class CustomException extends Exception {
// Constructor to initialize the exception message
public CustomException(String message) {

super(message);

}

class DataProcessor {
public void processData(int data) throws CustomException {
if (data < 0) {
throw new CustomException("Invalid data: " + data);
}else {

System.out.printin("Data processed successfully: " + data);

}

public class Main {
public static void main(String[] args) {
DataProcessor processor = new DataProcessor();
try {
processor.processData(10);
processor.processData(-5);
} catch (CustomException e) {

System.out.printin("CustomException occurred: " + e.getMessage());

Java solution

| ¢ | Demonstrate the working of a nested try block with an example. L2 | 6 |
Solution: Nested try blocks are used when one part of a block may raise multiple exceptions, and each type of
exception requires different handling. By nesting try-catch blocks, you can handle exceptions at different levels of
granularity. Here's an example demonstrating the working of nested try blocks:

public class Main {
public static void main(String[] args) {
try {
try {
int[] numbers ={1, 2, 3};

System.out.printIn("Array element at index 3: " + numbers[3]); // This will throw
ArraylndexOutOfBoundsException

} catch (ArraylndexOutOfBoundsException e) {
System.out.printin("ArraylndexOutOfBoundsException caught: " + e.getMessage());

}

String str = null;

System.out.printIn("Length of string: " + str.length()); // This will throw NullPointerException
} catch (NullPointerException e) {

System.out.printin("NullPointerException caught: " + e.getMessage());
} catch (Exception e) {

System.out.printIn("Exception caught: " + e.getMessage());

}
In this example:
- The outer try block contains an inner try block and another block of code.

- The inner try block tries to access an element at index 3 of an array, which results in an
“ArraylndexOutOfBoundsException’.

- The “catch’ block inside the inner try block catches and handles the “ArraylndexOutOfBoundsException’.
- After handling the exception, execution continues with the code in the outer try block.

- Inside the outer try block, another block of code tries to get the length of a null string, which results in a
"NullPointerException’.

- The “catch’ block outside the inner try block catches and handles the "NullPointerException’.

- If any other exception occurs that is not caught by the specific catch blocks, the catch block for “Exception” at the
outermost level will catch and handle it.

This example demonstrates how nested try blocks allow for more granular exception handling, where specific
exceptions can be caught and handled at different levels of the code.

Java solution

| Q.09 [a | What do you mean by a thread? Explain the different ways of creating threads. | L2 7
Solution: In programming, a thread refers to the smallest unit of execution within a process. A thread is a
lightweight process that can execute independently and concurrently with other threads. Threads share the same
memory space and resources within a process, allowing them to interact with each other efficiently. Threads enable
concurrent execution of tasks, which can improve performance and responsiveness in multi-tasking and multi-user

environments.
There are several ways to create threads in Java:

1. Extending the Thread class: In this approach, you create a new class that extends the "Thread" class and overrides
its ‘run()’ method. You then instantiate objects of this class and call the “start()" method on them to start the
execution of the thread.

class MyThread extends Thread {
public void run() {

System.out.printin("Thread is running");

}

public class Main {
public static void main(String[] args) {
MyThread thread = new MyThread();

thread.start();

}

2. Implementing the Runnable interface: Instead of extending the "Thread" class, you can implement the 'Runnable’
interface, which defines a single method ‘run(). This approach is preferred because Java allows multiple interfaces
to be implemented by a class, but only single inheritance is allowed. You then create a "Thread" object, passing an
instance of your class that implements "Runnable’ as a parameter, and call the “start()’ method on the thread object.

class MyRunnable implements Runnable {
public void run() {

System.out.printIn("Thread is running");

}
public class Main {
public static void main(String[] args) {
MyRunnable myRunnable = new MyRunnable();
Thread thread = new Thread(myRunnable);

thread.start();

Java solution

3. Using lambda expressions: Since Java 8, you can use lambda expressions to define the ‘run()” method directly
when creating a new ‘Thread’ object.

public class Main {
public static void main(String[] args) {
Thread thread = new Thread(() -> {
System.out.printIn("Thread is running");

1;

thread.start();

}

Each of these methods has its own advantages and use cases. However, using the ‘Runnable” interface is generally
recommended because it separates the task from the thread's execution logic, promoting better code organization
and reusability.

9b | What is the need of synchronization? Explain with an example how synchronization is
) . L3 7
implemented in JAVA.

Using Synchronized Methods

U Synchronization is easy in Java, because all objects have
their own implicit monitor associated with them.

U To enter an object’s monitor, just call a method that
has been modified with the synchronized keyword.

U While a thread is inside a synchronized method, all other
threads that try to call it (or any other synchronized
method) on the same instance have to wait.

multiple threads. Synchronization in Java ensures that only one thread at a time can access a shared resource,
thereby preventing data corruption or inconsistency due to concurrent access by multiple threads. This is particularly
important in multithreaded environments where multiple threads may be accessing and modifying shared data
simultaneously.

In Java, synchronization can be achieved using several mechanisms:

1.Synchronized methods: By declaring a method as “synchronized’, Java ensures that only one thread can execute
that method at a time on a given instance of the class.

public synchronized void synchronizedMethod() {
2. Synchronized blocks: You can use synchronized blocks to lock on a specific object or class instance.
public void someMethod() {

synchronized(this) {

}

Java solution

3. Synchronization on a specific object: You can synchronize on a specific object to control access to critical sections
of code.

Object lock = new Object();
public void someMethod() {
synchronized(lock) {
}
}

4. Using the “synchronized’ keyword: You can also use the ‘synchronized™ keyword to synchronize on class-level
methods or blocks.

public class MyClass {
public static synchronized void staticMethod() {
}
public void someMethod() {

synchronized(MyClass.class) {

}

}

Synchronization ensures that only one thread can execute the synchronized code block at a time, preventing
potential race conditions and ensuring data consistency when accessing shared resources. However, it's essential to
use synchronization judiciously as it can impact performance, and improper synchronization can lead to deadlocks or
other concurrency issues.

Java solution

\ c \ Discuss values() and value Of() methods in Enumerations with suitable examples. L2 6

Solution:

The values() and valueOf() Methods

All enumerations automatically contain two predefined methods: values() and valueOff().
Their general forms are shown here:

public static enum-type |] values()
public static enum-type valueOf(String str)

U The values() method returns an array that contains a
list of the enumeration constants.

U The valueOf() method returns the enumeration
constant whose value corresponds to the string passed

in str.
UIn both cases, enum-type is the type of the
enumeration.

The following program demonstrates the values() and valueOf() methods:
// Use the built-in enumeration methods.

// An enumeration of apple wvarieties.
enum Apple {
Jonathan, GoldenDel, RedDel, Winesap, Cortland

}

class EnumDemo2 {
public static woid main(String argsl(])

{

Apple ap;
System.out.println("Here are all Apple ceonstants:");

// use values()

Apple allapples[] = Apple.values();

for (Apple a : allapples)
System.out.println(a);

System.out.println();

// use valueOf()
ap = Apple.valueOf ("Winesap") ;
System.out.println ("ap.econtains " + ap);

Java solution

\ 10.a \ What is multithreading? Write a program to create multiple threads in JAVA.

L2

7

Solution: Multithreading is a programming concept that allows multiple threads of execution to run concurrently

within a single process. Each thread represents a separate flow of control within the program, enabling it to perform

tasks independently and concurrently with other threads. Multithreading is commonly used in applications that
require handling multiple tasks simultaneously, such as user interfaces, server applications, and parallel processing

tasks.
Here's a simple Java program that demonstrates how to create multiple threads:
public class MultiThreadDemo {
public static void main(String[] args) {

Thread threadl = new Thread(new MyRunnable(), "Thread 1");

Thread thread2 = new Thread(new MyRunnable(), "Thread 2");

Thread thread3 = new Thread(new MyRunnable(), "Thread 3");

threadl.start();

thread2.start();

thread3.start();

}

class MyRunnable implements Runnable {
@Override
public void run() {
for (inti=1;i<=5;i++){
System.out.printin(Thread.currentThread().getName() + ": " +i);
try {
Thread.sleep(1000); // Sleep for 1 second

} catch (InterruptedException e) {

e.printStackTrace();

b | Explain with an example how inter-thread communication is implemented in JAVA.

L3

SOLUTION: Inter-thread communication in Java refers to the ability of threads to coordinate their activities by
signaling each other. This coordination allows threads to synchronize their actions and exchange data effectively.

Java provides mechanisms such as wait(), notify(), and notifyAll() methods, along with the synchronized keyword, to

facilitate inter-thread communication.

Java solution

public class InterThreadCommunicationExample {
public static void main(String[] args) {
Message message = new Message();
Thread producerThread = new Thread(new Producer(message), "Producer");
Thread consumerThread = new Thread(new Consumer(message), "Consumer");
producerThread.start();

consumerThread.start();

}

class Message {
private String message;
private boolean empty = true;
public synchronized void produce(String message) {
while (lempty) {
try {
wait();
} catch (InterruptedException e) {

Thread.currentThread().interrupt();

}

this.message = message;
empty = false;

notify();

public synchronized String consume() {
while (empty) {
try {
wait();
} catch (InterruptedException e) {

Thread.currentThread().interrupt();

Java solution

empty = true;
notify();

return message;

}

class Producer implements Runnable {
private Message message;
public Producer(Message message) {
this.message = message;
}
@Override
public void run() {
String[] messages = {"Message 1", "Message 2", "Message 3", "Message 4", "Message 5"};
for (String msg : messages) {
message.produce(msg);
System.out.printin("Produced: " + msg);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {

Thread.currentThread().interrupt();

}

class Consumer implements Runnable {
private Message message;
public Consumer(Message message) {

this.message = message;

}
@Override
public void run() {
for (inti=0;i<5;i++) {
String msg = message.consume();

System.out.printin("Consumed: " + msg);

Java solution

try {
Thread.sleep(1000);
} catch (InterruptedException e) {

Thread.currentThread().interrupt();

}

\ C \ Explain auto-boxing/unboxing in expressions.

Solution:

Autoboxing/Unboxing Occurs in Expressions

dIn general, autoboxing and unboxing take place
whenever a conversion into an object or from an
object is required.

dThis applies to expressions.

UdWithin an expression, a numeric object is
automatically unboxed.

(d The outcome of the expression is reboxed, if necessary.

U For example, consider the following program:

Java solution

// Autoboxing/unboxing occurs inside expressions.

class AutoBox3 {
public static void main(String args([]) {

Integer iOb, iOb2;
int i;

iOb = 100;
System.out.println("Original value of iOb: " + iOb);

// The following automatically unboxes iOb,
// performs the increment, and then re

// the result back into iOb.
++10b;

System.out.println("After ++iOb:

