
Java solution

BCS306A

Model Question Paper-I/II with effect from 2023-24 (CBCS Scheme)

 USN

Third Semester B.E. Degree Examination
Object Oriented Programming with JAVA

TIME: 03 Hours Max. Marks: 100

 Note: 01. Answer any FIVE full questions, choosing at least ONE question from each MODULE.

02. Use a JAVA code snippet to illustrate a specific code design or a purpose.

Module -1
*Bloom’s
Taxonomy

Level

Marks

Q.01 a Explain different lexical issues in JAVA. L2 7

b Define Array. Write a Java program to implement the addition of two matrixes. L3 7

c Explain the following operations with examples. (i)<< (ii)>> (iii)>>> L2 6

 OR

Q.02 a Explain object-oriented principles. L2 7

b Write a Java program to sort the elements using a for loop. L3 7

c Explain different types of if statements in JAVA L2 6

 Module-2

Q. 03 a What are constructors? Explain two types of constructors with an example program.
L3 7

b Define recursion. Write a recursive program to find nth Fibonacci number. L3 7

c Explain the various access specifiers in Java. L2 6

 OR

Q.04 a Explain call by value and call by reference with an example program L3 7

b Write a program to perform Stack operations using proper class and Methods. L3 7

c Explain the use of this in JAVA with an example. L2 6

 Module-3

Q. 05 a Write a Java program to implement multilevel inheritance with 3 levels of

hierarchy.
L3 7

b Explain how an interface is used to achieve multiple Inheritances in Java. L3 7

c Explain the method overriding with a suitable example. L2 6

 OR

Q. 06 a What is single-level inheritance? Write a Java program to implement single-level
inheritance.

L3 7

b What is the importance of the super keyword in inheritance? Illustrate with a
suitable example.

L3 7

c What is abstract class and abstract method? Explain with an example. L2 6

 Module-4

Q. 07 a Define package. Explain the steps involved in creating a user-defined package
with an example.

L2 7

b Write a program that contains one method that will throw an

IllegalAccessException and use proper exception handles so that the exception
should be printed.

L3 7

c Define an exception. What are the key terms used in exception handling? Explain.
L2 6

 OR

Q. 08 a Explain the concept of importing packages in Java and provide an example

demonstrating the usage of the import statement.
L2 7

Java solution

b How do you create your own exception class? Explain with a program. L3 7

c Demonstrate the working of a nested try block with an example. L2 6

Page 01 of 02

BCS306A
 Module-5

Q. 09 a What do you mean by a thread? Explain the different ways of creating threads. L2 7

b What is the need of synchronization? Explain with an example how synchronization

is implemented in JAVA.
L3 7

c Discuss values() and value Of() methods in Enumerations with suitable examples. L2 6

 OR

Q. 10 a What is multithreading? Write a program to create multiple threads in JAVA. L2 7

b Explain with an example how inter-thread communication is implemented in
JAVA.

L3 7

c Explain auto-boxing/unboxing in expressions. L2 6

Java solution

Page 02 of 02

 1. Explain different lexical issues in JAVA.

Solution:

Java solution

b Define Array. Write a Java program to implement the addition of two matrixes.

Solution:

import java.util.Scanner;

public class MatrixAddition {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter number of rows for matrices: ");
 int rows = scanner.nextInt();

 System.out.print("Enter number of columns for matrices: ");
 int columns = scanner.nextInt();
 int[][] matrix1 = new int[rows][columns];
 int[][] matrix2 = new int[rows][columns];
 int[][] sum = new int[rows][columns];
 System.out.println("Enter elements for matrix 1:");

Java solution
 inputMatrix(matrix1, scanner);
 System.out.println("Enter elements for matrix 2:");
 inputMatrix(matrix2, scanner);
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < columns; j++) {
 sum[i][j] = matrix1[i][j] + matrix2[i][j];
 }
 System.out.println("Resultant matrix after addition:");
 displayMatrix(sum);
 scanner.close();
 }
 public static void inputMatrix(int[][] matrix, Scanner scanner) {
 for (int i = 0; i < matrix.length; i++) {
 for (int j = 0; j < matrix[0].length; j++) {
 System.out.print("Enter element at position [" + i + "][" + j + "]: ");
 matrix[i][j] = scanner.nextInt();
 }
 }
 }
 public static void displayMatrix(int[][] matrix) {
 for (int[] row : matrix) {
 for (int elem : row) {
 System.out.print(elem + " ");
 }
 System.out.println();
 }
 }
}

c. Explain the following operations with examples. (i)<< (ii)>> (iii)>>>

(i) `<<` (Left Shift Operator):
The left shift operator (`<<`) shifts the bits of a number to the left by a specified number of positions. This

operation effectively multiplies the number by 2 raised to the power of the shift amount. Bits shifted off the left end
are discarded, and zero bits are shifted in from the right end.

Example:

Java solution
int num = 5;
int result = num << 2;
System.out.println(result);

(ii) `>>` (Signed Right Shift Operator):
The signed right shift operator (`>>`) shifts the bits of a number to the right by a specified number of positions.
This operation effectively divides the number by 2 raised to the power of the shift amount. Bits shifted off the
right end are discarded, and the leftmost bit (the sign bit) is shifted in from the left end, preserving the sign of
the number.

Example:
int num = -16;
int result = num >> 2;
System.out.println(result);

(iii) `>>>` (Unsigned Right Shift Operator):
The unsigned right shift operator (`>>>`) shifts the bits of a number to the right by a specified number of
positions. Unlike the signed right shift operator, the unsigned right shift operator fills the leftmost positions
with zero bits regardless of the sign of the number.

Example:
int num = -16; // Binary representation: 1111 0000
int result = num >>> 2;
System.out.println(result);

It's important to note that the behavior of these operators may vary based on the data type of the operand.

Q.02 a Explain object-oriented principles. L2 7

Java solution

Solution:

Java solution

Java solution

 b Write a Java program to sort the elements using a for loop. L3 7

Solution:

Java solution

 2 c Explain different types of if statements in JAVA L2 6

Java solution

Q. 03 a What are constructors? Explain two types of constructors with an example program.
L3 7

Java solution

Java solution

 b Define recursion. Write a recursive program to find nth Fibonacci number. L3 7

public class Fibonacci {

 public static void main(String[] args) {

 int n = 10; // Example: Find the 10th Fibonacci number

 int fibonacciNumber = fibonacci(n);

 System.out.println("The " + n + "th Fibonacci number is: " + fibonacciNumber);

 }

 public static int fibonacci(int n) {

 if (n <= 1) {

 return n; // Base case: Fibonacci of 0 is 0, Fibonacci of 1 is 1

 } else {

 // Recursive case: Fibonacci of n is the sum of Fibonacci(n-1) and Fibonacci(n-2)

 return fibonacci(n - 1) + fibonacci(n - 2);

 }

 }

}

Java solution

 c Explain the various access specifiers in Java. L2 6

Solution:

Java solution

Q.04 a Explain call by value and call by reference with an example program L3 7

Solution: when you pass arguments to a method, there are two ways in which these arguments can be passed: "call

by value" and "call by reference". These concepts refer to how the parameters are passed to the method and how

changes made to the parameters affect the original variables.

Call by Value:In call by value, a copy of the actual parameter's value is passed to the method. Any changes made to

the parameter inside the method do not affect the original variable.

public class CallByValueExample {

 public static void main(String[] args) {

 int num = 10;

 System.out.println("Before calling the method: " + num);

 changeValue(num);

 System.out.println("After calling the method: " + num);

 }

 public static void changeValue(int value) {

 value = 20;

 System.out.println("Inside the method: " + value);

 }

}

In the example above, even though the value of value is changed inside the changeValue method, it does not affect

the original variable num because Java passes arguments by value.

Call by Reference:

In call by reference, instead of passing the actual value, a reference to the memory location of the actual parameter

is passed to the method. This means any changes made to the parameter inside the method will affect the original

variable.

public class CallByReferenceExample {

 public static void main(String[] args) {

 StringBuilder str = new StringBuilder("Hello");

 System.out.println("Before calling the method: " + str);

 changeValue(str);

 System.out.println("After calling the method: " + str);

 }

 public static void changeValue(StringBuilder value) {

 value.append(" World");

 System.out.println("Inside the method: " + value);

 }

}

In this example, the changeValue method modifies the StringBuilder object passed to it, and this modification

affects the original variable str because Java passes arguments by reference for objects.

Java solution

 b Write a program to perform Stack operations using proper class and Methods. L3 7

Solution:

 public class Stack {

 private int maxSize;

 private int[] stackArray;

 private int top;

 public Stack(int size) {

 maxSize = size;

 stackArray = new int[maxSize];

 top = -1; // Stack is initially empty

 }

 public void push(int value) {

 if (top == maxSize - 1) {

 System.out.println("Stack overflow! Cannot push element " + value);

 } else {

 stackArray[++top] = value;

 System.out.println("Pushed element: " + value);

 }

 }

 public int pop() {

 if (top == -1) {

 System.out.println("Stack underflow! Cannot pop element");

 return -1;

 } else {

 int value = stackArray[top--];

 System.out.println("Popped element: " + value);

 return value;

 }

 }

 public void display() {

 if (top == -1) {

 System.out.println("Stack is empty");

 } else {

 System.out.print("Stack elements: ");

 for (int i = 0; i <= top; i++) {

 System.out.print(stackArray[i] + " ");

 }

 System.out.println();

 }

 }

 public static void main(String[] args) {

 Stack stack = new Stack(5); // Create a stack of size 5

 stack.push(10);

 stack.push(20);

 stack.push(30);

 stack.display();

 stack.pop();

 stack.display();

 }

}

Java solution

 c Explain the use of this in JAVA with an example. L2 6

Solution:

Java solution

Q. 05 a Write a Java program to implement multilevel inheritance with 3 levels of
hierarchy.

L3 7

Solution:

Java solution

// Parent class

class Animal {

 void eat() {

 System.out.println("Animal is eating");

 }

}

// Child class inheriting from Animal

class Dog extends Animal {

 void bark() {

 System.out.println("Dog is barking");

 }

}

// Grandchild class inheriting from Dog

class Labrador extends Dog {

 void color() {

 System.out.println("Labrador is brown in color");

 }

}

public class Main {

 public static void main(String[] args) {

 Labrador labrador = new Labrador();

 labrador.eat(); // Inherited from Animal

 labrador.bark(); // Inherited from Dog

 labrador.color(); // Own method of Labrador

 }

}

b Explain how an interface is used to achieve multiple Inheritances in Java.

Solution:multiple inheritance refers to a scenario where a class inherits behaviors (methods) and properties (fields)

from more than one superclass. Unlike some other programming languages like C++, Java does not support multiple

inheritance with classes. However, Java provides a mechanism to achieve a form of multiple inheritance using

interfaces.

An interface in Java is a reference type, similar to a class,that can contain only constants, method signatures, default

methods, static methods, and nested types. Interfaces cannot have instance fields or constructors. Classes can

implement one or more interfaces, thus allowing them to inherit behavior from multiple sources.

Here's how an interface is used to achieve multiple inheritances in Java:

1. Define interfaces: Interfaces are declared using the `interface` keyword. They contain method signatures without

any implementation details.

interface Interface1 {

 void method1();

}

interface Interface2 {

 void method2();

}

2. Implement interfaces: Classes implement interfaces using the `implements` keyword. A class can implement

multiple interfaces.

class MyClass implements Interface1, Interface2 {

 // Implement method1() from Interface1

 public void method1() {

 // Implementation

 }

Java solution

 // Implement method2() from Interface2

 public void method2() {

 // Implementation

 }

}

3. Override interface methods: The implementing class must provide concrete implementations for all the methods

declared in the interfaces it implements.

4. Use the class: You can create an object of the implementing class and call its methods.

public class Main {

 public static void main(String[] args) {

 MyClass obj = new MyClass();

 obj.method1();

 obj.method2();

 }

}

By implementing multiple interfaces, a class can inherit and provide implementations for methods defined in those

interfaces. This approach promotes code reusability and flexibility in design.

 c Explain the method overriding with a suitable example. L2 6

Solution:

Java solution

Q. 06 a What is single-level inheritance? Write a Java program to implement single-level
inheritance.

L3 7

Solution:

Java solution

b What is the importance of the super keyword in inheritance? Illustrate with a suitable example.

Solution:

Java solution

 c What is abstract class and abstract method? Explain with an example. L2 6

Solution:

Java solution

7a Define package. Explain the steps involved in creating a user-defined package with an

example.
L2 7

Solution:

Java solution

b Write a program that contains one method that will throw an IllegalAccessException and

use proper exception handles so that the exception should be printed. L3 7

Solution:

 public class Main {

 public static void main(String[] args) {

 try {

 // Call a method that throws IllegalAccessException

 performOperation();

 } catch (IllegalAccessException e) {

 // Handle the exception

 System.out.println("Caught IllegalAccessException: " + e.getMessage());

 }

 }

 // Method that throws IllegalAccessException

 public static void performOperation() throws IllegalAccessException {

 // Simulating a scenario where IllegalAccessException occurs

 throw new IllegalAccessException("Access denied");

 }

}

c Define an exception. What are the key terms used in exception handling? Explain.
L2 6

Solution:

In programming, an exception is an event or object that occurs during the execution of a program, which disrupts

the normal flow of instructions. Exceptions are typically caused by errors in the program's logic, unexpected

conditions, or external factors such as input/output failures. In Java and many other programming languages,

exceptions are represented as objects that contain information about the error, such as its type, message, and

possibly other relevant details.

Key terms used in exception handling include:

1. Exception: An object representing an exceptional condition that has occurred during the execution of a program.

Exceptions can be thrown (generated) by the program or by the runtime environment.

2. Throw: The act of explicitly raising (throwing) an exception within a program. This is typically done using the

`throw` keyword followed by an exception object.

3. Try: A block of code where exceptions may occur. It is followed by one or more catch blocks and/or a finally block.

4. Catch: A block of code that handles (catches) an exception thrown within a try block. It specifies the type of

exception it can handle and provides code to handle the exception gracefully.

5. Finally: A block of code that is always executed, regardless of whether an exception occurs or not. It is typically

used for cleanup tasks such as closing resources (e.g., files, network connections) or releasing locks.

Java solution
6. Try-with-resources: A Java feature introduced in Java 7 that allows automatic resource management. It ensures

that resources (e.g., files, streams) are closed properly, even if an exception occurs, by declaring and initializing the

resources within a try block. The resources are automatically closed when the try block exits, either normally or due

to an exception.

7. Checked Exception: An exception that must be declared in a method's signature using the `throws` keyword or

handled using a try-catch block. Examples include IOException and SQLException.

8. Unchecked Exception: An exception that does not need to be declared or handled explicitly. These are subclasses

of RuntimeException or Error. Examples include NullPointerException and ArrayIndexOutOfBoundsException.

9. Exception Handling: The process of detecting, reacting to, and resolving exceptions in a program. It involves

writing code to handle exceptions gracefully, prevent program crashes, and provide meaningful error messages to

users.

10. Exception Propagation: The mechanism by which an exception is passed from one method to another or from

one part of the program to another. If an exception is not caught and handled within a method, it is propagated up

the call stack until it is caught or until it reaches the top-level of the program, resulting in termination of the progr

Java solution

Q. 08 a Explain the concept of importing packages in Java and provide an example

demonstrating the usage of the import statement.
L2 7

Solution:

Java solution

b How do you create your own exception class? Explain with a program. L3 7

Solution: In Java, you can create your own custom exception classes by extending the built-in Exception class or one

of its subclasses like RuntimeException. This allows you to define specific types of exceptions that are relevant to

your application's domain. to create a custom exception class:

class CustomException extends Exception {

 // Constructor to initialize the exception message

 public CustomException(String message) {

 super(message);

 }

}

class DataProcessor {

 public void processData(int data) throws CustomException {

 if (data < 0) {

 throw new CustomException("Invalid data: " + data);

 } else {

 System.out.println("Data processed successfully: " + data);

 }

 }

}

public class Main {

 public static void main(String[] args) {

 DataProcessor processor = new DataProcessor();

 try {

 processor.processData(10);

 processor.processData(-5);

 } catch (CustomException e) {

 System.out.println("CustomException occurred: " + e.getMessage());

 }

}

}

Java solution

c Demonstrate the working of a nested try block with an example. L2 6

Solution: Nested try blocks are used when one part of a block may raise multiple exceptions, and each type of

exception requires different handling. By nesting try-catch blocks, you can handle exceptions at different levels of

granularity. Here's an example demonstrating the working of nested try blocks:

public class Main {

 public static void main(String[] args) {

 try {

 try {

 int[] numbers = {1, 2, 3};

 System.out.println("Array element at index 3: " + numbers[3]); // This will throw

ArrayIndexOutOfBoundsException

 } catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("ArrayIndexOutOfBoundsException caught: " + e.getMessage());

 }

 String str = null;

 System.out.println("Length of string: " + str.length()); // This will throw NullPointerException

 } catch (NullPointerException e) {

 System.out.println("NullPointerException caught: " + e.getMessage());

 } catch (Exception e) {

 System.out.println("Exception caught: " + e.getMessage());

 }

 }

}

In this example:

- The outer try block contains an inner try block and another block of code.

- The inner try block tries to access an element at index 3 of an array, which results in an

`ArrayIndexOutOfBoundsException`.

- The `catch` block inside the inner try block catches and handles the `ArrayIndexOutOfBoundsException`.

- After handling the exception, execution continues with the code in the outer try block.

- Inside the outer try block, another block of code tries to get the length of a null string, which results in a

`NullPointerException`.

- The `catch` block outside the inner try block catches and handles the `NullPointerException`.

- If any other exception occurs that is not caught by the specific catch blocks, the catch block for `Exception` at the

outermost level will catch and handle it.

This example demonstrates how nested try blocks allow for more granular exception handling, where specific

exceptions can be caught and handled at different levels of the code.

Java solution

Q. 09 a What do you mean by a thread? Explain the different ways of creating threads. L2 7

Solution: In programming, a thread refers to the smallest unit of execution within a process. A thread is a

lightweight process that can execute independently and concurrently with other threads. Threads share the same

memory space and resources within a process, allowing them to interact with each other efficiently. Threads enable

concurrent execution of tasks, which can improve performance and responsiveness in multi-tasking and multi-user

environments.

There are several ways to create threads in Java:

1. Extending the Thread class: In this approach, you create a new class that extends the `Thread` class and overrides

its `run()` method. You then instantiate objects of this class and call the `start()` method on them to start the

execution of the thread.

 class MyThread extends Thread {

 public void run() {

 System.out.println("Thread is running");

 }

 }

 public class Main {

 public static void main(String[] args) {

 MyThread thread = new MyThread();

 thread.start();

 }

 }

2. Implementing the Runnable interface: Instead of extending the `Thread` class, you can implement the `Runnable`

interface, which defines a single method `run()`. This approach is preferred because Java allows multiple interfaces

to be implemented by a class, but only single inheritance is allowed. You then create a `Thread` object, passing an

instance of your class that implements `Runnable` as a parameter, and call the `start()` method on the thread object.

 class MyRunnable implements Runnable {

 public void run() {

 System.out.println("Thread is running");

 }

 }

 public class Main {

 public static void main(String[] args) {

 MyRunnable myRunnable = new MyRunnable();

 Thread thread = new Thread(myRunnable);

 thread.start();

 }

 }

Java solution

3. Using lambda expressions: Since Java 8, you can use lambda expressions to define the `run()` method directly

when creating a new `Thread` object.

 public class Main {

 public static void main(String[] args) {

 Thread thread = new Thread(() -> {

 System.out.println("Thread is running");

 });

 thread.start();

 }

 }

Each of these methods has its own advantages and use cases. However, using the `Runnable` interface is generally

recommended because it separates the task from the thread's execution logic, promoting better code organization

and reusability.

9b What is the need of synchronization? Explain with an example how synchronization is

implemented in JAVA.
L3 7

multiple threads. Synchronization in Java ensures that only one thread at a time can access a shared resource,

thereby preventing data corruption or inconsistency due to concurrent access by multiple threads. This is particularly

important in multithreaded environments where multiple threads may be accessing and modifying shared data

simultaneously.

In Java, synchronization can be achieved using several mechanisms:

1.Synchronized methods: By declaring a method as `synchronized`, Java ensures that only one thread can execute

that method at a time on a given instance of the class.

public synchronized void synchronizedMethod() {

2. Synchronized blocks: You can use synchronized blocks to lock on a specific object or class instance.

public void someMethod() {

 synchronized(this) {

 }

}

Java solution

3. Synchronization on a specific object: You can synchronize on a specific object to control access to critical sections

of code.

Object lock = new Object();

public void someMethod() {

 synchronized(lock) {

 }

}

4. Using the `synchronized` keyword: You can also use the `synchronized` keyword to synchronize on class-level

methods or blocks.

public class MyClass {

 public static synchronized void staticMethod() {

 }

 public void someMethod() {

 synchronized(MyClass.class) {

 }

 }

}

Synchronization ensures that only one thread can execute the synchronized code block at a time, preventing

potential race conditions and ensuring data consistency when accessing shared resources. However, it's essential to

use synchronization judiciously as it can impact performance, and improper synchronization can lead to deadlocks or

other concurrency issues.

Java solution

c Discuss values() and value Of() methods in Enumerations with suitable examples. L2 6

Solution:

Java solution

10.a What is multithreading? Write a program to create multiple threads in JAVA. L2 7

Solution: Multithreading is a programming concept that allows multiple threads of execution to run concurrently

within a single process. Each thread represents a separate flow of control within the program, enabling it to perform

tasks independently and concurrently with other threads. Multithreading is commonly used in applications that

require handling multiple tasks simultaneously, such as user interfaces, server applications, and parallel processing

tasks.

Here's a simple Java program that demonstrates how to create multiple threads:

public class MultiThreadDemo {

 public static void main(String[] args) {

 Thread thread1 = new Thread(new MyRunnable(), "Thread 1");

 Thread thread2 = new Thread(new MyRunnable(), "Thread 2");

 Thread thread3 = new Thread(new MyRunnable(), "Thread 3");

 thread1.start();

 thread2.start();

 thread3.start();

 }

}

class MyRunnable implements Runnable {

 @Override

 public void run() {

 for (int i = 1; i <= 5; i++) {

 System.out.println(Thread.currentThread().getName() + ": " + i);

 try {

 Thread.sleep(1000); // Sleep for 1 second

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

}

b Explain with an example how inter-thread communication is implemented in JAVA.
L3 7

SOLUTION: Inter-thread communication in Java refers to the ability of threads to coordinate their activities by

signaling each other. This coordination allows threads to synchronize their actions and exchange data effectively.

Java provides mechanisms such as wait(), notify(), and notifyAll() methods, along with the synchronized keyword, to

facilitate inter-thread communication.

Java solution

public class InterThreadCommunicationExample {

 public static void main(String[] args) {

 Message message = new Message();

 Thread producerThread = new Thread(new Producer(message), "Producer");

 Thread consumerThread = new Thread(new Consumer(message), "Consumer");

 producerThread.start();

 consumerThread.start();

 }

}

class Message {

 private String message;

 private boolean empty = true;

 public synchronized void produce(String message) {

 while (!empty) {

 try {

 wait();

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 }

 }

 this.message = message;

 empty = false;

 notify();

 }

 public synchronized String consume() {

 while (empty) {

 try {

 wait();

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 }

 }

Java solution

 empty = true;

 notify();

 return message;

 }

}

class Producer implements Runnable {

 private Message message;

 public Producer(Message message) {

 this.message = message;

 }

 @Override

 public void run() {

 String[] messages = {"Message 1", "Message 2", "Message 3", "Message 4", "Message 5"};

 for (String msg : messages) {

 message.produce(msg);

 System.out.println("Produced: " + msg);

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 }

 }

 }

}

class Consumer implements Runnable {

 private Message message;

 public Consumer(Message message) {

 this.message = message;

 }

 @Override

 public void run() {

 for (int i = 0; i < 5; i++) {

 String msg = message.consume();

 System.out.println("Consumed: " + msg);

Java solution

 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 Thread.currentThread().interrupt();

 }

 }

 }

}

c Explain auto-boxing/unboxing in expressions. L2 6

Solution:

Java solution

